On Weak Pareto Optimality for Pseudoconvex Nonsmooth Multiobjective Optimization Problems
نویسندگان
چکیده
The purpose of this paper is to characterize the weak Pareto optimality for multiobjective pseudoconvex problem. In fact, it is a first order optimality characterization that generalize the Karush-Kuhn-Tucker condition. Moreover, this work is an extension of the single-objective case [6] to the multiobjective one with pseudoconvex continuous functions. Mathematics Subject Classification: 46N10, 26A51, 26A27
منابع مشابه
Optimality Conditions and Duality in Nonsmooth Multiobjective Programs
We study nonsmooth multiobjective programming problems involving locally Lipschitz functions and support functions. Two types of Karush-Kuhn-Tucker optimality conditions with support functions are introduced. Sufficient optimality conditions are presented by using generalized convexity and certain regularity conditions. We formulate Wolfe-type dual and Mond-Weirtype dual problems for our nonsmo...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملA General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملOptimality and duality for nonsmooth multiobjective fractional programming with mixed constraints
We consider nonsmooth multiobjective fractional programming problems with inequality and equality constraints. We establish the necessary and sufficient optimality conditions under various generalized invexity assumptions. In addition, we formulate a mixed dual problem corresponding to primal problem, and discuss weak, strong and strict converse duality theorems.
متن کاملNew Applications of Variational Analysis to Optimization and Control
We discuss new applications of advanced tools of variational analysis and generalized differentiation to a number of important problems in optimization theory, equilibria, optimal control, and feedback control design. The presented results are largely based on the recent work by the author and his collaborators. Among the main topics considered and briefly surveyed in this paper are new calculu...
متن کامل